Friday, July 22, 2011

On the Importance of Going Global

Since being proposed by Sir Ronald Fisher in a series of papers during the period 1912 to 1934 (Aldrich, 1977), Maximum Likelihood Estimation (MLE) has been one of the "workhorses" of statistical inference, and so it plays a central role in econometrics. It's not the only game in town, of course, especially if you're of the Bayesian persuasion, but even then the likelihood function (in the guise of the joint data density) is a key ingredient in the overall recipe.

MLE provides one of the core "unifying themes" in econometric theory and practice. Many of the particular estimators that we use are just applications of MLE; and many of the tests we use are simply special cases of the core tests that go with MLE - the likelihood ratio; score (Lagrange multiplier), and Wald tests.

The statistical properties that make MLE (and the associated tests) appealing are mostly "asymptotic" in nature. That is, they hold if the sample size becomes infinitely large. There are no guarantees, in general, that MLEs will have "good" properties if the sample size is small. It will depend on the problem in question. So, for example, in some cases MLEs are unbiased, but in others they are not.

More specifically, you'll be aware that (in general) MLEs have the following desirable large-sample properties - they are:
  • (At least) weakly consistent.
  • Asymptotically efficient.
  • Asymptotically normally distributed.

Just what does "in general" mean here? ..........