Friday, October 2, 2015

Illustrating Spurious Regressions

I've talked a bit about spurious regressions a bit in some earlier posts (here and here). I was updating an example for my time-series course the other day, and I thought that some readers might find it useful.

Let's begin by reviewing what is usually meant when we talk about a "spurious regression".

In short, it arises when we have several non-stationary time-series variables, which are not cointegrated, and we regress one of these variables on the others.

In general, the result that we get are nonsensical, and the problem is only worsened if we increase the sample size. This phenomenon was observed by Granger and Newbold (1974), and others, and Phillips (1986) developed the asymptotic theory that he then used to prove that in a spurious regression the Durbin-Watson statistic converges in probability to zero; the OLS parameter estimators and R2 converge to non-standard limiting distributions; and the t-ratios and F-statistic diverge in distribution, as T ↑ ∞ .

Let's look at some of these results associated with spurious regressions. We'll do so by means of a simple simulation experiment.