Sunday, November 16, 2014

Orthogonal Regression: First Steps

When I'm introducing students in my introductory economic statistics course to the simple linear regression model, I like to point out to them that fitting the regression line so as to minimize the sum of squared residuals, in the vertical direction, is just one possibility.

They see, easily enough, that squaring the residuals deals with the positive and negative signs, and that this prevents obtaining a "visually silly" fit through the data. Mentioning that one could achieve this by working with the absolute values of the residuals provides the opportunity to mention robustness to outliers, and to link the discussion back to something they know already - the difference between the behaviours of the sample mean and the sample median, in this respect.

We also discuss the fact that measuring the residuals in the vertical ("y") direction is intuitively sensible, because the model is purporting to "explain" the y variable. Any explanatory failure should presumably be measured in this direction. However, I also note that there are other options - such as measuring the residuals in the horizontal ("x") direction.

Perhaps more importantly, I also mention "orthogonal residuals". I mention them. I don't go into any details. Frankly, there isn't time; and in any case this is usually the students' first exposure to regression analysis and they have enough to be dealing with. However, I've thought that we really should provide students with an introduction to orthogonal regression - just in the simple regression situation - once they've got basic least squares under their belts. 

The reason is that orthogonal regression comes up later on in econometrics in more complex forms, at least for some of these students; but typically they haven't seen the basics. Indeed, orthogonal regression is widely used (and misused - Carroll and Ruppert, 1966) to deal with certain errors-in-variables problems. For example, see Madansky (1959).

That got me thinking. Maybe what follows is a step towards filling this gap.